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Abstract

To cope with concept drift, we placed a probability distribution over the location
of the most-recent drift point. We used Bayesian model comparison to update
this distribution from the predictions of models trained on blocks of consecutive
observations and pruned potential drift points with low probability. We compare
our approach to a non-probabilistic method for drift and a probabilistic method
for change-point detection. In our experiments, our approach generally yielded
improved accuracy and/or speed over these other methods.

1 Introduction

Consider a classification task, in which the objective is to assign labels Y to vectors of one or more
attribute values X . To learn to perform this task, we use training data to model f : X → Y ,
the unknown mapping from attribute values to labels, or target concept, in hopes of maximizing
classification accuracy. A common problem in online classification tasks is concept drift, which is
when the target concept changes over time. Identifying concept drift is often difficult. If the correct
label for some x is y1 at time step t1 and y2 at time step t2, does this indicate concept drift or that
the training examples are noisy?

Researchers have approached drift in a number of ways. Schlimmer and Grainger [1] searched for
candidate models by reweighting training examples according to how well they fit future examples.
Some have maintained and modified partially learned models, e.g., [2, 3]. Many have maintained
and compared “base” models trained on blocks of consecutive examples to identify those that are
the best predictors of new examples, e.g., [4, 5, 6, 7, 8]. We focus on this approach. Such methods
address directly the uncertainty about the existence and location of drift.

We propose using probability theory to reason about this uncertainty. A probabilistic model of drift
offers three main benefits to the research community. First, our experimental results show that a
probabilistic model can achieve new combinations of accuracy and speed on classification tasks.
Second, probability theory is a well-developed theory that could offer new insights into the problem
of concept drift. Third, probabilistic models can easily be combined in a principled way, and their
use in the machine-learning field continues to grow [9]. Therefore, our model could readily and
correctly share information with other probabilistic models or be incorporated into broader ones.

In this paper we present a probabilistic model of the number of most-recent training examples that
the active concept describes. Maximum-likelihood estimation would overfit the model by conclud-
ing that each training was generated by a different target concept. This is unhelpful for future predic-
tions, since it eliminates all generalization from past examples to future predictions. Instead, we use
Bayesian model comparison [9], or BMC, to reason about the trade-offs between model complexity
(i.e., the number of target concepts) and goodness of fit. We first describe BMC and its application to
detecting change points. We then describe a Bayesian approach to concept drift. Finally, we show
the results of an empirical comparison among our method (pruned and unpruned), BMC for change
points, and Dynamic Weighted Majority [5], an ensemble method for concept drift.
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2 Bayesian model comparison

BMC uses probability theory to assign degrees of belief to candidate models given observations and
prior beliefs [9]. By Bayes’ Theorem, p(M |D) = p(D|M)p(M)

p(D) , where M is the set of models
under consideration and D is the set of observations. Researchers in Bayesian statistics have used
BMC to look for change points in time-series data. The goal of change-point detection is to segment
sequences of observations into blocks that are identically distributed and usually assumed to be
independent.

2.1 Previous work on Bayesian change-point detection

Barry and Hartigan [10, 11] used product partition models as distributions over possible segmenta-
tions of time-series data. Exact inference requires O(n3) time in the number of observations and
may be accurately approximated in O(n) time using Markov sampling [10]. In an online task, ap-
proximate training and testing on n observations would require O(n2) time, since the model must
be updated after new training data. These updates would require resampling and testing for conver-
gence.

Fearnhead [12] showed how to perform direct simulation from the posterior distribution of a class
of multiple-change-point models. This method requires O(n2) time and avoids the need to use
Markov sampling and to test for convergence. Again, an approximate method can be performed in
approximately linear time, but the model must be regularly rebuilt in online tasks.

The computational costs associated with offline methods make it difficult to apply them to online
tasks. Researchers have also looked for online methods for change-point detection. Fearnhead and
Liu [13] introduced an online version of Fearnhead’s simulation method [12] which uses particle
filtering to quickly update the distribution over change points. Adams and MacKay [14] proposed
an alternative method for online Bayesian change-point detection. We now describe it in more detail,
since it will be the starting point for our own model.

2.2 A method for online Bayesian change-point detection

Adams and MacKay [14] proposed maintaining a discrete distribution over lt, the length in time
steps of the longest substrings of observations that are identically distributed, ending at time step
t. This method therefore models the location of only the most recent change point, a cost-saving
measure useful for many online problems.

A conditional prior distribution p(lt|lt−1) is used, such that

p(lt|lt−1) =

 λ−1 if lt = 0;
1− λ−1 if lt = lt−1 + 1;
0 otherwise.

(1)

In principle, a more sophisticated prior could be used. The crucial aspect is that, given that a sub-
string is identically distributed, it assigns mass to only two outcomes: the next observation is dis-
tributed identically to the observations of the substring, or it is the first of a new substring.

The algorithm is initialized at time step 0 with a single base model that is the prior distribution over
observations. Initially, p(l0 = 0) = 1. Let Dt be the observation(s) made at time step t. At each
time step the algorithm computes a new posterior distribution p(lt|D1:t) by marginalizing out lt−1
from

p(lt, lt−1|D1:t) =
p(Dt|lt, D1:t−1)p(lt|lt−1)p(lt−1|D1:t−1)

p(Dt|D1:t−1)
. (2)

This is a straightforward summation over a discrete variable.

To find p(lt, lt−1|D1:t), consider the three components in the numerator. First, p(lt−1|D1:t−1) is the
distribution that was calculated at the previous time step. Next, p(lt|lt−1) is the prior distribution.
Since only two outcomes are assigned any mass, each element in p(lt−1|D1:t−1) contributes mass
to only two points in the posterior distribution. This keeps the algorithm linear in the size of the en-
semble. Finally, p(Dt|lt, D1:t−1) = p(Dt|Dt−lt:t−1). In other words, it is the predictive probability
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of a model trained on the observations received from time steps t − lt to t − 1. The denominator
then normalizes the distribution.

Once this posterior distribution p(lt|D1:t) is calculated, each model in the ensemble is trained on
the new observation. Then, a new model is initialized with the prior distribution over observations,
corresponding to lt+1 = 0.

3 Comparing conditional distributions for concept drift

We propose a new approach to coping with concept drift. Since the objective is to maximize classi-
fication accuracy, we want to model the conditional distribution p(Y |X) as accurately as possible.
Using [14] as a starting point, we place a distribution over lt, which now refers to the length in time
steps that the currently active concept has been active.

There is now an important distinction between BMC for concept drift and BMC for change points:
BMC for concept drift models changes in p(Y |X), whereas BMC for change points models changes
in the joint distribution p(Y,X). We use the conditional distribution to look for drift points because
we do not wish to react to changes in the marginal distribution p(X). A change point in the joint
distribution p(Y,X) could correspond to a change point in p(X), a drift point in p(Y |X), or both.
Reacting only to changes in p(Y |X) means that we compare models on their ability to classify
unlabeled attribute values, not generate those values.

In other words, we assume that neither the sequence of attribute values X1:t nor the sequence of
class labels Y1:t alone provide information about lt. Therefore p(lt|lt−1, Xt) = p(lt|lt−1) and
p(lt−1|Y1:t−1, X1:t) = p(lt−1|Y1:t−1, X1:t−1). We also assume that examples from different con-
cepts are independent. We use Equation 1 as the prior distribution p(lt|lt−1) [14]. Equation 2 is
replaced with

p(lt, lt−1|Y1:t, X1:t) =
p(Yt|lt, Y1:t−1, X1:t)p(lt|lt−1)p(lt−1|Y1:t−1, X1:t−1)

p(Yt|Y1:t−1, X1:t)
. (3)

To classify unlabeled attribute values X with class label Y , the predictive distribution is

p(Y |X) =

t∑
i=1

p(Y |X,Y1:t, X1:t, lt = i)p(lt = i). (4)

We call this method Bayesian Conditional Model Comparison (BCMC). If left unchecked, the size
of its ensemble will grow linearly with the number of observations. In practice, this is far too
computationally expensive for many online-learning tasks. We therefore prune the set of models
during learning. Let φ be a user-specified threshold for the minimum posterior probability a model
must have to remain in the ensemble. Then, if there exists some i such that p(lt = i|D1:t) < φ <
p(lt = 0|lt−1), simply set p(lt = i|Dt) = 0 and discard the model p(D|Dt−i:t). We call this
modified method Pruned Bayesian Conditional Model Comparison (PBCMC).

4 Experiments

We conducted an empirical comparison using our implementations of PBCMC and BCMC. We hy-
pothesized that looking for drift points in the conditional distribution p(Y |X) instead of change
points in the joint distribution p(Y,X) would lead to higher accuracy on classification tasks. To test
this, we included our implementation of the method of Adams and MacKay [14], which we refer to
simply as BMC. It is identical to BCMC, except that it uses Equation 2 to compute the posterior over
lt, where D ≡ (Y,X).

We also hypothesized that PBCMC could achieve improved combinations of accuracy and speed
compared to Dynamic Weighted Majority (DWM) [5], an ensemble method for concept drift that
uses a heuristic weighting scheme and pruning. DWM is a top performer on the problems we con-
sidered [5]. Like the other learners, DWM maintains a dynamically-sized, weighted ensemble of
models trained on blocks of examples. It predicts by taking a weighted-majority vote of the models’
predictions and multiplies the weights of those models that predict incorrectly by a constant β. It
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then rescales the weights so that maximum weight is 1. Then if the algorithm’s global prediction
was incorrect, it adds a new model to the ensemble with a weight of 1, and it removes any models
with weights below a threshold θ. In the cases of models which output probabilities, DWM considers
a prediction incorrect if a model did not assign the most probability to the correct label.

4.1 Test problems

We conducted our experiments using four problems previously used in the literature to evaluate
methods for concept drift The STAGGER concepts [1, 3] are three target concepts in a binary classifi-
cation task presented over 120 time steps. Attributes and their possible values are shape ∈ {triangle,
circle, rectangle}, color ∈ {red, green, blue}, and size ∈ {small, medium, large}. For the first 40
time steps, the target concept is color = red ∧ size = small. For the next 40 time steps, the target
concept is color = green ∨ shape = circle. Finally, for the last 40 time steps, the target concept is
size = medium ∨ size = large. A number of researchers have used this problem to evaluate methods
for concept drift [4, 5, 3, 1]. Per the problem’s usual formulation, we evaluated each learner by
presenting it with a single, random example at each time step and then testing it on a set of 100
random examples, resampled after each time step. We conducted 50 trials.

The SEA concepts [8] are four target concepts in a binary classification task, presented over 50,000
time steps. The target concept changes every 12,500 time steps, and associated with each concept
is a single, randomly generated test set of 2,500 examples. At each time step, a learner is presented
with a randomly generated example, which has a 10% chance of being labeled as the wrong class.
Every 100 time steps, the learner is tested on the active concept’s test set. Each example consists
of numeric attributes xi ∈ [0, 10], for i = 1, . . . , 3. The target concepts are hyperplanes, such that
y = + if x1 + x2 ≤ θ, where θ ∈ {7, 8, 9, 9.5}, for each of the four target concepts, respectively;
otherwise, y = −. Note that x3 is an irrelevant attribute. Several researchers have used a shifting
hyperplane to evaluate learners for concept drift [5, 6, 7, 2, 8]. We conducted 10 trials. In this
experiment, µ0 = 5.

The calendar-apprentice (CAP) data sets [15, 16] is a personal-scheduling task. Using a subset of 34
symbolic attributes, the task is to predict a user’s preference for a meeting’s location, duration, start
time, and day of week. There are 12 attributes for location, 11 for duration, 15 for start time, and
16 for day of week. Each learner was tested on the 1,685 examples for User 1. At each time step,
the learner was presented the next example without its label. After classifying it, it was then told the
correct label so it could learn.

The electricity-prediction data set consists of 45,312 examples collected at 30-minute intervals be-
tween 7 May 1996 and 5 December 1998 [17]. The task is to predict whether the price of electricity
will go up or down based on five numeric attributes: the day of the week, the 30-minute period of
the day, the demand for electricity in New South Wales, the demand in Victoria, and the amount
of electricity to be transferred between the two. About 39% of the examples have unknown values
for either demand in Victoria or the transfer amount. At each time step, the learner classified the
next example in temporal order before being given the correct label and using it to learn. In this
experiment, µ0 = 0.

4.2 Experimental design

We tested the learning methods on the four problems described. For STAGGER and SEA, we mea-
sured accuracy on the test set, then computed average accuracy and 95% confidence intervals at each
time step. We also computed the average normalized area under the performance curves (AUC) with
95% confidence intervals. We used the trapezoid rule on adjacent pairs of accuracies and normalized
by dividing by the total area of the region. We present both AUC under the entire curve and after the
first drift point to show both a learner’s overall performance and its performance after drift occurs.
For CAP and electricity prediction, we measured accuracy on the unlabeled observations.

All the learning methods used a model we call Bayesian Naive Bayes, or BNB, as their base models.
BNB makes the conditionally independent factor assumption (a.k.a. the “naive Bayes” assump-
tion) that the joint distribution p(Y,X) factors into p(Y )

∏n
i=1 p(Xi|Y ) [9]. It calculates values for

p(Y |X) as needed using Bayes’ Theorem. It takes the Bayesian approach to probabilities (hence the
additional “Bayes” in the name), meaning that it places distributions over the parameters that govern
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Table 1: Results for (a) the STAGGER concepts and (b) the SEA concepts.

(a) STAGGER concepts

AUC AUCLearner and Parameters
(overall) (after drift)

BNB, on each concept 0.912±0.005 0.914±0.007
PBCMC, λ = 20, φ = 10−4 0.891±0.005 0.885±0.007
BCMC, λ = 20 0.891±0.005 0.885±0.007
BMC, λ = 50 0.884±0.005 0.876±0.008
DWM, β = 0.5, θ = 10−4 0.878±0.005 0.868±0.007
BNB, on all examples 0.647±0.008 0.516±0.011

(b) SEA concepts

AUC AUCLearner and Parameters
(overall) (after drift)

BNB, on each concept 0.974±0.002 0.974±0.002
DWM, β = 0.9, θ = 10−3 0.974±0.001 0.974±0.001
BCMC, λ = 10, 000 0.970±0.002 0.969±0.002
PBCMC, λ = 10, 000, φ = 10−4 0.964±0.002 0.961±0.003
BMC, λ = 200 0.955±0.003 0.948±0.003
BNB, on all examples 0.910±0.003 0.889±0.002

the distributions p(Y ) and p(X|Y ) into which p(Y,X) factors. In our experiments, BNB predicted
by marginalizing out the latent parameter variables to compute marginal likelihoods. Note that we
use BNB, a generative model over p(Y,X), even though we said that we wish to model p(Y |X) as
accurately as possible. This is to ensure a fair comparison with BMC which needs p(Y,X). We are
more interested in the effects of looking for changes in each distribution, not which is a better model
for the active concept.

In our experiments, BNB placed Dirichlet distributions [9] over the parameters ~θ of multinomial
distributions p(Y ) and p(Xi|Y ) when Xi was a discrete attribute. All Dirichlet priors assigned
equal density to all valid values of ~θ. BNB placed Normal-Gamma distributions [9] over the pa-
rameters µ and λ of normal distributions p(Xi|Y ) when Xi was a continuous attribute. p(µ, λ) =
N (µ|µ0, (βλ)

−1)Gam(λ|a, b). The predictive distribution is then a Student’s t-distribution with
mean µ and precision λ. In all of our experiments, β = 2 and a = b = 1. The value of µ0 is
specified for each experiment with continuous attributes.

We also tested BNB as a control to show the effects of not attempting to cope with drift and BNB
trained using only examples from the active concept (when such information was available) to show
possible accuracy given perfect information about drift.

Parameter selection is difficult when evaluating methods for concept drift. Train-test-and-validate
methods such as k-fold cross validation are not appropriate because the observations are or-
dered and not assumed to be identically distributed. We therefore tested each learner on each
problem using each of a set of values for each parameter. Due to limited space, we present
results for each learning method using the best parameter settings we found. We make no
claim that these parameters are optimal, but they are representative of the overall trends we ob-
served. We performed this parameter search for all the learning methods. The parameters we
tested were λ ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}, φ ∈ {10−2, 10−3, 10−4},
β ∈ {0.25, 0.5, 0.75, 0.9}, and θ ∈ {10−2, 10−3, 10−4, 0}.
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Table 2: Accuracy on the CAP and electricity data sets.

PBCMC BCMC BMC DWM BNB
λ = 10, 000, φ = 10−4 λ = 5, 000 λ = 10 β = 0.75, θ = 10−4

Location 63.74 63.92 63.15 65.76 62.14
Duration 63.15 63.03 64.10 66.35 62.37

Start Time 38.40 39.17 35.19 37.98 32.40
Day of Week 51.81 51.81 51.22 51.28 51.22

Average 54.27 54.48 53.41 55.34 52.03
λ = 10, φ = 10−2 λ = 10 λ = 10 β = 0.25, θ = 10−3

Electricity 85.32 85.33 65.37 82.31 62.44

4.3 Results and analysis

Table 1 shows the top results for the STAGGER and SEA concepts. On the STAGGER concepts, PBCMC
and BCMC performed almost identically and have a higher mean AUC than BMC, but their 95%
confidence intervals overlap. PBCMC and BCMC outperformed DWM. On the SEA concepts, DWM
was the top performer, matching the accuracy of BNB trained on each concept and outperforming all
the other learner methods. BCMC was next, followed by PBCMC, then BMC, and the BNB.

Table 2 shows the top results for the CAP and electricity data sets. DWM performed the best on the
location and duration data sets, while BCMC performed best on the start time and day-of-week data
sets. PBCMC matched the accuracy of BCMC on the day-of-week and duration data sets and came
close to it on the others. DWM had the highest mean accuracy over all four tasks, followed by PBCMC
and BCMC, then BMC, and finally BNB. BCMC performed the best on the electricity data set, closely
followed by PBCMC.

The first conclusion is clear: looking for changes in the conditional distribution p(Y |X) led to
better accuracy than looking for changes in the joint distribution p(Y,X). With the close exception
of the duration problem in the CAP data sets, PBCMC and BCMC outperformed BMC, sometimes
dramatically so. What is less clear is the relative merits of PBCMC and DWM. We now analyze these
learners to better understand address this question.

4.3.1 Reactivity versus stability

The four test problems can be partitioned into two subsets: those on which PBCMC was generally
more accurate (STAGGER and electricity) and those on which DWM was (SEA and CAP). We can
obtain further insight into what separates these two subsets by noting that both PBCMC and DWM can
be said to have “strategies,” which are determined by their parameters. For PBCMC, higher values of
λmean that it will assign less probability initially to new models. For DWM, higher values of β mean
that it will penalize models less for making mistakes. For both, lower values of φ and θ respectively
mean that they are slower to completely remove poorly performing models from consideration. We
can thus interpret these parameters to describe how “reactive” or “stable” the learners are, i.e., the
degree to which new observations can alter their hypotheses [4].

The two subsets are also partitioned by the strategy which was superior for the problems in each.
For both PBCMC and DWM, some of the most reactive parameterizations we tested were optimal on
STAGGER and electricity, but some of the most stable were optimal on SEA and CAP. Further, we
observed generally stratified results across parameterizations. For each problem, almost all of the
parameterizations of the top learner were more accurate than almost all of the parameterizations of
the other. This indicates that PBCMC was generally better for the concepts which favor reactivity,
whereas DWM was generally better for the concepts which favor stability.

4.3.2 Closing the performance gaps

We now consider why these gaps in performance exist and how they might be closed. Figure 1 shows
the average accuracies of PBCMC and DWM at each time step on the STAGGER and SEA concepts.
These are for the experiments reported in Table 1, so the parameters, numbers of trials, etc. are the
same. We present 95% confidence intervals at selected time steps for both. Figure 1 shows that the

6



 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120

P
re

d
ic

ti
v
e 

A
cc

u
ra

cy
 (

%
)

Time Step (t)

PBCMC, λ = 20, φ = 10
-4

DWM, β = 0.5, θ = 10
-4

(a)

 86

 88

 90

 92

 94

 96

 98

 100

 0  12500  25000  37500  50000

P
re

d
ic

ti
v
e 

A
cc

u
ra

cy
 (

%
)

Time Step (t)

PBCMC, λ = 10000, φ = 10
-4

DWM, β = 0.9, θ = 10
-3

(b)

Figure 1: Average accuracy on (a) the STAGGER concepts and (b) the SEA concepts. See text for
details.

better performing learners in each problem were faster to react to concept drift. This shows that
DWM did not perform better on SEA simply by being more stable whether the concept was or not.
On the SEA concepts, PBCMC did perform best with the most stable parameterization we tried, but
its main problem was that it wasn’t reactive enough when drift occurred.

We first consider whether the problem is one of parameter selection. Perhaps we can achieve better
performances by using a more reactive parameterization of DWM on certain problems and/or a more
stable parameterization of PBCMC on other problems. Our experimental results cast doubt on this
proposition. For the problems on which PBCMC was superior, DWM’s best results were not obtained
using the most reactive parameterization. In other words, simply using an even more reactive pa-
rameterization of DWM did not improve performance on these problems. Further, on the duration
problem in the CAP data sets, PBCMC also achieved the reported accuracy using λ = 5000 and
φ = 10−2, and on the location problem it acheived negligibly better accuracy using λ = 5000 and
φ = 10−3 or φ = 10−4. Therefore, simply using an even more stable parameterization of PBCMC
did not improve performance on these problems either. BCMC, which is just PBCMC with φ = 0, did
outperform PBCMC on SEA. It reacted more quickly than PBCMC did, but not as quickly as DWM
did, and at a much greater computational cost, since it had to maintain every model in order to have
the one(s) which would eventually gain weight relative to the other models. BCMC also was not a
significant improvement over PBCMC on the location and duration problems.

We therefore theorize that the primary reason for the differences in performance between PBCMC
and DWM is their approaches to updating their ensembles, which determines how they react to drift.
PBCMC favors reactivity by adding a new model at every time step and decaying the weights of all
models by the degree to which they are incorrect. DWM favors stability by only adding a new model
after incorrect overall predictions and only decaying weights of incorrect models, and then only by
a constant factor. This is supported by the results on problems favoring reactive parameterizations
compared with the results on problems favoring stable parameterizations. Further, that it is difficult
to close the performance gaps with better parameter selection suggests that there is a range of re-
activity or stability each favors. When parameterized beyond this range, the performance of each
learner degrades, or at least plateaus.

To further support this theory, we consider trends in ensemble sizes. Figure 2 shows the average
number of models in the ensembles of PBCMC and DWM at each time step on the STAGGER and
SEA concepts. These are again for the experiments reported in Table 1, and again we present 95%
confidence intervals at selected time steps for both. The figure shows that the trends in ensemble
sizes were roughly interchanged between the two learners on the two problems. On both problems,
one learner stayed within a relatively small range of ensemble sizes, whereas the other continued to
expand the ensemble when the concept was stable, only significantly pruning soon after drift. On
STAGGER, PBCMC expanded its ensemble size far more, whereas DWM did on SEA. This agrees
with our expectations for the synthetic concepts. STAGGER contains no noise, whereas SEA does,
which complements the designs of the two learners. When noise is more likely, DWM will update
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Figure 2: Average numbers of models on (a) the STAGGER concepts and (b) the SEA concepts. See
text for details.

its ensemble more than when it is not as likely. However, when noise is more likely, PBCMC will
usually have difficulty preserving high weights for models which are actually useful. Conversely,
PBCMC regularly updates its ensemble, and DWM will have less difficulty maintaining high weights
on good models because it only decays weights by a constant factor.

Therefore, it seems that each learner reaches the boundary of its favored range of reactivity or
stability when further changes in that direction cause it to either be so reactive that it often assigns
relatively high probability of drift to many time steps for which there was no drift, or so stable that
it cannot react to actual drift. On STAGGER, PBCMC matched the performance of BNB on the first
target concept (not shown), whereas DWM made more mistakes as it reacted to erroneously inferred
drift. On SEA, PBCMC needs to be parameterized to be so stable that it cannot react quickly to drift.

5 Conclusion and Future Work

In this paper we presented a Bayesian approach to coping with concept drift. Empirical evaluations
supported our method. We showed that looking for changes in the conditional distribution p(Y |X)
led to better accuracy than looking for changes in the joint distribution p(Y,X). We also showed that
our Bayesian approach is competitive with one of the top ensemble methods for concept drift, DWM,
sometimes beating and sometimes losing to it. Finally, we explored why each method sometimes
outperforms the other. We showed that both PBCMC and DWM appear to favor a different range of
reactivity or stability.

Directions for future work include integrating the advantages of both PBCMC and DWM into a single
learner. Related to this task is a better characterization of their relative advantages and the relation-
ships among them, their favored ranges of reactivity or stability, and the problems to which they are
applied. It also important to note that the more constrained ensemble sizes discussed above corre-
spond to faster classification speeds. Future work could explore how to balance this desiderata with
the desire for better accuracy. Finally, another direction is to integrate a Bayesian approach with
other probabilistic models. With a useful probabilistic model for concept drift, such as ours, one
could potentially incorporate existing probabilistic domain knowledge to guide the search for drift
points or build broader models that use beliefs about drift to guide decision making.
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